Estimation of Non-Normalized Statistical Models by Score Matching
نویسنده
چکیده
One often wants to estimate statistical models where the probability density function is known only up to a multiplicative normalization constant. Typically, one then has to resort to Markov Chain Monte Carlo methods, or approximations of the normalization constant. Here, we propose that such models can be estimated by minimizing the expected squared distance between the gradient of the log-density given by the model and the gradient of the log-density of the observed data. While the estimation of the gradient of log-density function is, in principle, a very difficult non-parametric problem, we prove a surprising result that gives a simple formula for this objective function. The density function of the observed data does not appear in this formula, which simplifies to a sample average of a sum of some derivatives of the log-density given by the model. The validity of the method is demonstrated on multivariate Gaussian and independent component analysis models, and by estimating an overcomplete filter set for natural image data.
منابع مشابه
Estimation of Unnormalized Statistical Models without Numerical Integration
Parametric statistical models of continuous or discrete valued data are often not properly normalized, that is, they do not integrate or sum to unity. The normalization is essential for maximum likelihood estimation. While in principle, models can always be normalized by dividing them by their integral or sum (their partition function), this can in practice be extremely difficult. We have been ...
متن کاملEstimation Theory and Information Geometry Based on Denoising
We consider a new estimation method (“score matching”) for parametric statistical models. It is based on optimal denoising using empirical Bayes. The ensuing method has the additional advantage that it does not require the model probability densities to be properly normalized, unlike maximum likelihood. In fact, it does not even require the model densities to be integrable, so one can use impro...
متن کاملA Two-Layer ICA-Like Model Estimated by Score Matching
Capturing regularities in high-dimensional data is an important problem in machine learning and signal processing. Here we present a statistical model that learns a nonlinear representation from the data that reflects abstract, invariant properties of the signal without making requirements about the kind of signal that can be processed. The model has a hierarchy of two layers, with the first la...
متن کاملEvaluating treatment effectiveness under model misspecification: A comparison of targeted maximum likelihood estimation with bias-corrected matching
Statistical approaches for estimating treatment effectiveness commonly model the endpoint, or the propensity score, using parametric regressions such as generalised linear models. Misspecification of these models can lead to biased parameter estimates. We compare two approaches that combine the propensity score and the endpoint regression, and can make weaker modelling assumptions, by using mac...
متن کاملSome extensions of score matching
Many probabilistic models are only defined up to a normalization constant. This makes maximum likelihood estimation of the model parameters very difficult. Typically, one then has to resort to Markov Chain Monte Carlo methods, or approximations of the normalization constant. Previously, a method called score matching was proposed for computationally efficient yet (locally) consistent estimation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 6 شماره
صفحات -
تاریخ انتشار 2005